结构方程模型
2011年03月02日 | 作者: adminlin | 分类: 企业管理满意度 |
结构方程模型
结构方程模型(Structural·Equation·Modeling,SEM) 结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。
三种分析方法对比
线性相关分析 :线性相关分析指出两个随机变量之间的统计联系。两个变量地位平等,没有因变量和自变量之分。因此相关系数不能反映单指标与总体之间的因果关系。
线性回归分析 :线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因,导致出现单项指标与总体出现负相关等无法解释的数据分析结果。
结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。”
目前,已经有多种软件可以处理SEM,包括:LISREL,AMOS, EQS, Mplus.
结构方程模型假设条件
• 合理的样本量(James Stevens的Applied Multivariate Statistics for the Social Sciences一书中说平均一个自变量大约需要15个case;Bentler and Chou (1987)说平均一个估计参数需要5个case就差不多了,但前提是数据质量非常好;这两种说法基本上是等价的;而Loehlin (1992)在进行蒙特卡罗模拟之后发现对于包含2~4个因子的模型,至少需要100个case,当然200更好;小样本量容易导致模型计算时收敛的失败进而影响到参数估计;特别要注意的是当数据质量不好比如不服从正态分布或者受到污染时,更需要大的样本量)
• 连续的正态内生变量(注意一种表面不连续的特例:underlying continuous;对于内生变量的分布,理想情况是联合多元正态分布即JMVN)
• 模型识别(识别方程)(比较有多少可用的输入和有多少需估计的参数;模型不可识别会带来参数估计的失败,我就吃过这个亏)
• 完整的数据或者对不完整数据的适当处理(对于缺失值的处理,一般的统计软件给出的删除方式选项是pairwise和listwise,然而这又是一对普遍矛盾:pairwise式的删除虽然估计到尽量减少数据的损失,但会导致协方差阵或者相关系数阵的阶数n参差不齐从而为模型拟合带来巨大困难,甚至导致无法得出参数估计;listwise不会有pairwise的问题,因为凡是遇到case中有缺失值那么该case直接被全部删除,但是又带来了数据信息量利用不足的问题——全杀了吧,难免有冤枉的;不杀吧,又难免影响整体局势)
• 模型的说明和因果关系的理论基础(实际上就是假设检验的逻辑——你只能说你的模型不能拒绝,而不能下定论说你的模型可以被接受)
想获取更多信息,或者咨询相关业务可以关注我们的微信公众平台:SMR_gz
或者扫描下面二维码